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Abstract

Advocates of no-take marine reserves emphasize their conservation benefits. Critics

counter that reserves would decrease fisheries yield. Analysis of a spatially explicit

harvesting model, however, shows that no-take marine reserves are always part of an

optimal harvest designed to maximize yield. The optimal harvest generates a spatial

source–sink structure with source populations placed in reserves. The sizes and locations

of the optimal reserves depend on a dimensionless length parameter. For small values of

this parameter, the maximum yield is obtained by placing a large reserve in the centre of

the habitat. For large values of this parameter, the optimal harvesting strategy is a spatial

‘chattering control’ with infinite sequences of reserves alternating with areas of intense

fishing. Such a chattering strategy would be impossible to actually implement, but in

these cases an approximate yet practicable policy, utilizing a small number of reserves,

can be constructed.
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I N T R O D U C T I O N

Advocates of no-take marine reserves emphasize their

ability to protect habitat, conserve biodiversity and defend

endangered stocks from overexploitation (Halpern &

Warner 2002; Lubchenco et al. 2003). Their use as a

fisheries management tool, however, has remained contro-

versial (Peterson 2002; Shipp 2002). Sceptics argue that the

use of no-take reserves would decrease yields relative to

optimally managed fisheries. Modelling studies to date (see

Gerber et al. 2003 for references) have shown that reserves

are yield-neutral or produce minor improvements when

compared with the best spatially uniform effort-control

policies. In some cases, the establishment of a reserve

decreases yield. When reserves do increase yield, it is usually

when the fishery is already overexploited (Gerber et al. 2003).

Most of these studies have used spatially implicit models

(National Research Council 2001; Gerber et al. 2003, but see

Gaines et al. 2003 for an exception). The principal advantage

of these models is that they are mathematically tractable

whereas spatially explicit models often are not. Spatially

implicit models, however, do have disadvantages. For

example, they usually must assume that reserves would

protect a fixed fraction of the stock from harvesting. Actual

reserves, on the contrary, protect a fixed area in space

through which fish move, and so require spatially explicit

models. As spatially explicit models are more difficult to

analyse, studies using them have resorted to a comparative

method. In this method, the yield produced by the best

harvesting strategy from one class of strategies is compared

with the yield produced by the best strategy from a different

class. The first class typically includes only spatially uniform

harvests. The second class usually contains strategies that

employ a small number of reserves (usually only one). The

problem with the comparative method is that there is no

guarantee that either class contains the harvesting strategy

that would maximize the yield over all feasible strategies.

Here, I take a different approach. Rather than calculating

the yield that results from a specified number and

arrangement of reserves, I derive the yield-maximizing

spatial harvesting strategy in a spatially explicit model in

which no reserves are imposed. The model is a combination

of the Schaefer harvest model (Schaefer 1957), which is at

the foundation of many bioeconomic analyses (Clark 1990),

and Fisher’s equation (Fisher 1937), a fundamental model in

spatial population dynamics (Kot 2001). As it turns out, the

optimal harvesting strategy that emerges always includes a

no-take reserve. In some cases, the optimal strategy has

Ecology Letters, (2003) 6: 843–849 doi: 10.1046/j.1461-0248.2003.00493.x

�2003 Blackwell Publishing Ltd/CNRS



infinitely many reserves arranged in an intricate network.

While the latter policy is clearly impractical, its form

suggests a simple approximate strategy, employing only two

reserves, that is nearly optimal. I compare this nearly

optimal strategy with the best spatially uniform harvesting

strategy to determine how much of an improvement it

actually represents.

T H E M O D E L

Let N(X,T ) be the population density of the stock at

location X and time T. I assume that N is governed by the

partial differential equation

@N

@T
¼ rN 1 � N

K

� �
þ D

@2N

@X 2
� qEðX ÞN ð1Þ

for 0 < x < L, and the boundary conditions

N ð0; T Þ ¼ N ðL; T Þ ¼ 0: ð2Þ
Equation 1 states that the rate of change of population

density at a given location is controlled by three processes:

population growth, movement and harvesting. The first

term on the right side of eqn 1 represents logistic population

growth. The parameter r is the intrinsic growth rate of the

stock and K is the environmental carrying capacity. The

second term describes the movement of the population as

by diffusion; the parameter D is the diffusion coefficient.

The final term describes harvesting. In this model, the

harvest rate at a given location is proportional to the

product of the stock size, N, and the effort applied at that

location, E(X ). The proportionality constant q, called the

‘catchability coefficient’ (Clark 1990) is the per capita

harvest rate per unit fishing effort.

Equation 1 holds for all locations inside the habitat,

which I assume is a line segment of length L. The boundary

conditions (eqn 2) complete the model by setting the

population density to zero at the habitat boundaries. In

effect, these boundary conditions imply that individuals that

cross the boundary immediately die. Thus the model

describes a population living in a patch of suitable habitat,

of length L, surrounded by unsuitable habitat. There is a

‘critical habitat size’ Lcr; if L < Lcr the stock cannot survive

even in the absence of harvesting (Kot 2001). For model

1–2,

Lcr ¼ p

ffiffiffiffi
D

r

r
: ð3Þ

For the subsequent analyses, I will assume L > Lcr.

I consider a population at equilibrium, which implies

¶N/¶T ¼ 0. We can, therefore, ignore the dependence of

N on T [by writing N(X,T ) ¼ N(X )] and rewrite eqns 1

and 2 as

D
d2N

dX 2
¼ �rN 1 � N

K

� �
þ qEðX ÞN ; ð4Þ

N ð0Þ ¼ N ðLÞ ¼ 0: ð5Þ
The equilibrium yield is then given by the integral

Y ½N ðX Þ;EðX Þ� ¼
Z L

0

qEðX ÞN ðX ÞdX : ð6Þ

If we take the perspective of a sole owner who owns

complete rights to exploit the population (Clark 1990), our

objective is to find the spatial distribution of effort E(X )

that maximizes the yield Y. Because of real limitations on

fishing effort, it is reasonable to assume the existence of an

upper limit on E(X ). We thus try to maximize the yield

over all effort functions that satisfy

0 � EðX Þ � Emax: ð7Þ

A N A L Y S I S A N D R E S U L T S

The first step in our analysis is to rescale the variables using

u ¼ N

K
; t ¼ rT ; x ¼ Xffiffiffiffiffiffiffiffiffi

D=r
p ;

hðxÞ ¼ qEðxÞ
r

; y ¼ Y

K
ffiffiffiffiffiffi
rD

p ; ‘ ¼ Lffiffiffiffiffiffiffiffiffi
D=r

p :

ð8Þ

The new dependent variable u measures the stock density

relative to the carrying capacity. The new variable t measures

time on a demographic scale; one unit of t is the time in

which the population would increase by a factor of e if it

were growing exponentially at the rate r. The new spatial

variable x measures distance using Lcr/p as the unit of

length. On this scale, the critical habitat size is ‘cr ¼ p.

Using the new variables, the fishery management problem

is to maximize

y½uðxÞ; hðxÞ� ¼
Z ‘

0

hðxÞuðxÞdx; ð9Þ

over all harvest strategies that satisfy

0 � hðxÞ � hmax; ð10Þ
subject to the state equations

d2u

dx2
¼ �uð1 � uÞ þ hðxÞu; ð11Þ

and the boundary conditions

uð0Þ ¼ uð‘Þ ¼ 0: ð12Þ
One advantage of rescaling the variables is immediately

apparent: it reduces the number of parameters from six

(r, K, D, q, L, and Emax) to two (‘ and hmax). As ‘ and hmax
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are the only remaining parameters, we know that the

carrying capacity has no qualitative effect on the solution.

The other parameters only affect the solution through their

effects on ‘ and hmax, which simplifies our analysis

tremendously. By varying only ‘ and hmax, one can find

the optimal harvest for every possible combination of the

original six parameters.

In the analysis that follows, I explore the effect of ‘ on

the optimal strategy. Small values of ‘ correspond to species

living in spatially restricted habitats with large diffusion

coefficients or small population growth rates. I assume that

hmax ‡ 1, which implies that the stock would be driven to

extinction if it were harvested everywhere at the maximum

rate.

The maximization problem (eqns 9–12) is an example of

a Lagrange problem in optimal control theory (Kot 2001). It

can be solved by applying Pontryagin’s Maximum Principle

(Pontryagin et al. 1962), which converts the maximization

problem into a two-point boundary value problem (see

Appendix). The boundary value problem must be solved

numerically to obtain the optimal harvest ĥhðxÞ and the

corresponding optimal stock size ûuðxÞ. We can, however,

obtain some important properties of the optimal harvest

without a numerical solution.

First, because h(x) appears linearly in both the population

dynamic eqn 11 and in the yield (eqn 9), ĥhðxÞ must be a

piecewise constant function (a so-called ‘bang–bang con-

trol’). More precisely, at any given location x, ĥhðxÞ takes on

only one of three values: 0, 1/2, or hmax. Further, ĥhðxÞ
always equals hmax near the habitat boundaries. Fish near

the boundary have a relatively high probability of

dispersing outside the suitable habitat and perishing; they

should be harvested as quickly as possible to maximize

yield.

Second, one can show that the optimal harvest always has

at least one reserve; i.e. ĥhðxÞ must equal zero on some part of

the habitat. If ĥhðxÞ did not have a reserve, it would have to

take one of the three forms: either ĥhðxÞ would equal hmax

everywhere, or it would equal 1/2 everywhere, or it would

include segments with ĥhðxÞ ¼ 1=2 and others with

ĥhðxÞ ¼ hmax. However, none of these three possibilities

are optimal. The first case can be eliminated because it results

in extinction of the stock and zero yield. A detailed analysis

(see Appendix) shows that if ĥhðxÞ ¼ 1=2 somewhere, then

ĥhðxÞ must equal 0 somewhere else, and so the second and

third cases can also be eliminated. The only remaining

possibility is that ĥhðxÞ includes at least one reserve. Note that

reserves are not built into this model. Rather, they emerge as

a result of the optimization procedure.

To determine the optimal size and placement of reserves,

and to determine what harvest rate should be employed

outside the reserves, one must solve a two-point boundary

value problem (defined by eqns 15–23 in the Appendix).

Figure 1 shows numerical solutions of this problem for

hmax ¼ 1 and a range of habitat lengths. For ‘ < 6

(approximately twice the critical habitat size) the maximum

yield is obtained by setting ĥh ¼ hmax near the boundaries

and by placing a no-take reserve in the centre of the habitat

(Fig. 1a, b). For ‘K ‘K 7.1, reserves alternate with areas of

maximal harvesting, and the number of reserves increases as

‘ increases (Fig. 1c–e). Further numerical solutions show

that the larger the maximal harvest rate hmax, the larger the

reserves should be for any given habitat size.

If ‘J 7.1, it can be shown that the optimal harvest

consists of three parts (Fig. 1f; also see the Appendix). The

central portion is given by a singular arc, on which ĥh ¼ 1=2.

[The harvest rate h ¼ 1/2 is also optimal for the Schaefer

model, the non-spatial version of model 9–12 (Clark 1990).]

On either side of the singular arc the optimal harvest rate

switches infinitely often between 0 and hmax. The distances

between switches shrink rapidly near the central singular arc.

They shrink so rapidly that the infinite number of switches

occur in a finite length of habitat and so rapidly that only a

few of the switches can be seen at the resolution of Fig. 1f.

These rapidly varying portions of the solution to an optimal

control problem are called chattering arcs (Zelikin & Borisov

1994).

D I S C U S S I O N

Model 4–6 is the simplest spatially explicit model that

captures the central processes of density-dependent growth,

movement and spatial harvesting. The processes that

govern actual fish populations are vastly more complicated.

For example, the life cycle of many marine fish can be

divided into two stages, one mobile and one relatively

sedentary, but model 4 ignores stage structure and assumes

that all individuals are identical. The habitats of many fish

are approximately two-dimensional and spatially heteroge-

neous, but model 4 assumes a homogeneous, one-dimen-

sional, patch of habitat embedded in a larger uninhabitable

region. In addition, the diffusion term in model 4 captures

the stochastic component of larval movement, but fish

dispersal actually reflects the interaction of stochasticity,

stage-specific behaviour and advection by currents.

Each of these ‘real-world’ complications is important and

should be investigated, but many of them will not change

the qualitative nature of the optimal solution. For example,

advection will break the spatial symmetry of the solution,

making reserves larger upstream. The best harvest policy,

however, will still be a bang–bang control combining

no-take reserves, maximally harvested areas and singular

arcs with intermediate harvest rates.

The boundary conditions (eqn 12) are important. They

reflect the assumed discontinuity between the habitat patch

and its uninhabitable surroundings. If this discontinuity
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were eliminated by using the no-flux boundary conditions

du/dx ¼ 0 at x ¼ 0 and x ¼ ‘, the optimal policy would be

the spatially homogeneous policy that sets ĥhðxÞ ¼ 1=2 for

all x. No-flux boundary conditions are also called ‘reflecting’

boundary conditions because they mimic a process whereby

individuals about to leave the habitat through the boundary

instantaneously reverse direction. These boundary condi-

tions are unrealistic for most marine fish because dispersing

larvae are at the mercy of currents and cannot change

direction of their own accord.

Other modelling studies have examined the effects of

spatial heterogeneity in the form of an intrinsic source–sink

structure in the environment (Crowder et al. 2000). A

‘source’ is a region in which emigration exceeds immigration

and a ‘sink’ is a region where immigration exceeds

emigration (Pulliam 1988). Sources and sinks also appear

in the optimal harvest strategy here, but they are produced

by the optimal harvest rather than by intrinsic environmen-

tal heterogeneity. The yield-maximizing policy requires

ĥh ¼ hmax wherever d2ûu=dx2 > 0 (Fig. 1). In these areas

the diffusion term in (eqn 1) is positive and augments the

net rate of change of population density. Thus areas of

maximum harvesting are sinks. In contrast, ĥh ¼ 0 wherever

d2ûu=dx2 < 0. Thus the locations of no-take reserves are

sources. Note again, however, that there is no intrinsic

source–sink structure in model 9–12. In the absence of

harvesting, d2u/dx2 < 0 at all places, and every location is a

source. Just as the existence of reserves in the optimal

harvest emerges as a result of the optimization procedure, so

does the existence of a source–sink structure.

For large ‘, the yield is maximized by an intricate network

of marine reserves, alternating with areas of maximal

harvesting and a large central area where effort controls

must be employed. Networks of reserves have been

advocated by many marine ecologists as being better than

single reserves in that they would ‘provide significantly

greater protection for marine communities than a single

reserve’ and ‘protect against catastrophes’ (Lubchenco et al.

2003). In the present study, I have shown that such marine

reserve networks may also produce better yields than single

reserves.

A harvest policy with infinitely many exceedingly small

reserves, like the optimal policy for large ‘, could never

actually be implemented. Spatial management policies must

have much simpler geometries to be practical. Fortunately, a

simple approximate solution is available. The chattering in
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Figure 1 Solutions to the optimal control

problem (eqns 9–12) for various values of

the dimensionless habitat length ‘ (dark

bars). Shaded areas represent different opti-

mum harvest levels: ĥh ¼ 0 (white), ĥh ¼ 1=2

(hatched) and ĥh ¼ hmax ¼ 1 (grey). The

dimensionless length and the optimal

number of reserves in each panel is (a)

‘ ¼ 3.2, 1 reserve; (b) ‘ ¼ 5.5, 1 reserve; (c)

‘ ¼ 6.3, 2 reserves; (d) ‘ ¼ 7, 3 reserves;

(e) ‘ ¼ 7.05, 4 reserves; and (f) ‘ ¼ 10,

infinitely many reserves. To facilitate com-

parisons, the x-axis has been shifted to place

the centre of the habitat at the origin.
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the optimal trajectory for large ‘ produces tiny oscillations

around u ¼ 1/2 (Fig. 1f). This suggests an approximate

solution for ‘ > 6, with only two reserves separated by a

central region with h ¼ 1/2 and bordered by regions of

maximal harvesting near the habitat boundaries. The top

panel of Fig. 2 shows the best such approximate solution as

a function of ‘. As ‘ increases, the fraction of the habitat

that should be set aside as reserve decreases and the

intermediate harvest intensity should be used over a larger

fraction of the habitat. The bottom panel of Fig. 2 shows

the advantage of the approximate policy over the best

spatially uniform policy. As ‘ shrinks to ‘cr, the advantage

increases without bound. For large ‘ however, the advantage

practically disappears. Thus, for relatively sedentary species,

with high population growth rates, living in large habitats,

i.e. for species that are thriving, spatially uniform policies are

likely to be close to optimal with respect to yield and

reserves will be less important.

For small values of ‘, ‘K 2‘cr, the yield-maximizing

harvest policy for model 4–6 is to create a large central

no-take reserve and to exert maximal fishing effort outside

the reserve. Further numerical studies show that the larger

the maximal effort hmax is, the larger the reserve should be.

‘Small ‘’ species have small population growth rates, large

diffusion coefficients, and live in spatially restricted habitats.

‘Large hmax’ species are relatively easy to catch (they have

high catchability coefficients) and are subject to intense

fishing pressure. These characteristics make small ‘, large

hmax species more vulnerable and therefore more likely to be

in need of large reserves for conservation purposes. The

goals of conservation and exploitation are often at odds but

my analysis of this simple model suggests that, at least in this

fortunate circumstance, they should employ the same means

to achieve their ends.
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A P P E N D I X

The first step in solving the maximization problem (eqns

9–12) is to convert eqn 11 into a system of two first-order

ordinary differential equations by setting du/dx ¼ v. The

problem then becomes a standard problem in optimal

control, namely to maximize the yield (eqn 9) over all non-

negative harvest functions h(x) subject to the new state

equations

du

dx
¼ v; ð13Þ

dv

dx
¼ hu � uð1 � uÞ; ð14Þ

subject to the control constraint (eqn 10) and the boundary

conditions (eqn 12).

Let u(x) ¼ [u(x), v(x)]T, k(x) ¼ [k1(x), k2(x)]T, let ½ûuðxÞ;
ĥhðxÞ� be an optimal pair, and construct the Hamiltonian

H ¼ k1v � k2uð1 � uÞ þ huð1 þ k2Þ; ð15Þ
¼ H0ðk; uÞ þ hH1ðk; uÞ: ð16Þ

Then, by the Maximum Principle, ûuðxÞ, ĥhðxÞ, and k(x)

satisfy the system of ordinary differential equations,

dûu

dx
¼ @

@k1

H ½kðxÞ; ûuðxÞ; ĥhðxÞ� ð17Þ

dv̂v

dx
¼ @

@k2

H ½kðxÞ; ûuðxÞ; ĥhðxÞ� ð18Þ

dk1

dx
¼ � @

@u
H ½kðxÞ; ûuðxÞ; ĥhðxÞ� ð19Þ

dk2

dx
¼ � @

@v
H ½kðxÞ; ûuðxÞ; ĥhðxÞ�; ð20Þ

the maximum condition

max
h2½0;hmax�

H ½kðxÞ; ûuðxÞ; hðxÞ� ¼ H ½kðxÞ; ûuðxÞ; ĥhðxÞ�; ð21Þ

the boundary conditions

uð0Þ ¼ uð‘Þ ¼ 0; ð22Þ

and the transversality conditions

k2ð0Þ ¼ k2ð‘Þ ¼ 0: ð23Þ
As the Hamiltonian is linear in h, the maximum condition

requires

ĥh ¼ 0; if H1½kðxÞ; ûuðxÞ� < 0

hmax; if H1½kðxÞ; ûuðxÞ� > 0.

�
ð24Þ

If

H1½kðxÞ; ûuðxÞ� ¼ 0 ð25Þ
on some interval (i.e. if k2 ¼ )1), then the maximum

condition does not provide any information about ĥh on that

interval. In this case one can differentiate eqn 25 with

respect to x to determine ĥh. As it turns out, we must

differentiate four times:

dH1

dx
¼ �uk1 þ vð1 þ k2Þ ¼ 0; ð26Þ

d2H1

dx2
¼ �2vk1 � u½1 þ 2k2 � uð1 þ 3k2Þ�

þ 2huð1 þ k2Þ ¼ 0; ð27Þ

d3H1

dx3
¼ ð4 � 5uÞuk1 þ v �1 � 4k2 þ 2uð1 þ 5k2Þ½ �

þ h �2uk1 þ 2vð1 þ k2Þ½ � ¼ 0; ð28Þ

d4H1

dx4
¼ uð1 � 20vk1 þ 8k2Þ � 3u2ð1 þ 9k2Þ

þ u3ð2 þ 20k2Þ þ 2v½4k1 þ vð1 þ 5k2Þ�
þ hu½�5 � 8k2 þ uð7 þ 15k2Þ� ¼ 0: ð29Þ

As k2 ¼ )1, and we are assuming u > 0, the first

derivative (eqn 26) implies k1 ¼ 0. The second derivative

(eqn 27) then gives u ¼ 1/2. Substituting these values into

the third derivative (eqn 28) gives v ¼ 0. Finally, the fourth

derivative (eqn 29) reduces to

� 1

2
h þ 1=4 ¼ 0: ð30Þ
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Thus we set h ¼ 1/2 to complete the determination of the

singular arc; setting ĥh ¼ 1=2 whenever H1½kðxÞ;
ûuðxÞ� ¼ 0 then completes the solution (eqn 24).

The number of derivatives that are required to find ĥh

determines the order of the singular arc (Lewis 1980). In

general, it can be shown that an even number of derivatives

are required (Robbins 1967). The intrinsic order of the singular

arc is that integer q such that (d2q/dx2q)H1 is the lowest

order total derivative of H1 in which h appears explicitly.

The local order of a singular arc is the least integer p such that

@

@h

d2p

dx2p
H1

����
kðxÞ;ûuðxÞ;ĥhðxÞ

6¼ 0: ð31Þ

From eqns (27) and (30) we see that the singular arc for

problem (9–12) has intrinsic order q ¼ 1 and local order

p ¼ 2.

There are two reasons that the order of the singular arc is

important. First, it has been shown that the inequality

variously known as Kelley’s condition (Zelikin & Borisov

1994) or the generalized Legendre–Clebsch condtion (Lewis

1980),

ð�1Þp @

@h

d2p

dx2p
H1

����
kðxÞ;ûuðxÞ;ĥhðxÞ

� 0 ð32Þ

is necessary if the singular arc of local order p is to provide

a maximum (Kelley et al. 1967). For the singular arc

of problem (9–12), the derivative in (eqn 32) equals )1/2

(c.f. eqn 30) and the inequality is satisfied. Secondly, Zelikin

& Borisov (1994) show that if a singular arc of second local

order is to join a non-singular arc, and if the Hamiltonian

system can be reduced to the semicanonical form

dz1

dx
¼ z2 þ f1ðz; hÞ; ð33Þ

dz2

dx
¼ z3 þ f2ðz; hÞ; ð34Þ

dz3

dx
¼ z4 þ f3ðz; hÞ; ð35Þ

dz4

dx
¼ aðzÞ þ hbðzÞ ð36Þ

by a change of variables (k, u) fi z, and if the fi satisfy

lim
j!þ0

fiðj4z1; j3z2; j2z3; jz4; hÞ
j4�i

¼ 0; ð37Þ

then in the neighbourhood of the singular arc the optimal

non-singular arc is chattering. ‘Chattering’ means that the

optimal control exhibits an infinite number of switches over

a finite length arc.

Setting

z1 ¼ 1 þ k2; z2 ¼ �k1; z3 ¼ ð2u � 1Þk2; z4 ¼ 2vk2

ð38Þ
reduces the Hamiltonian system (eqns 17–20) to the semi-

cannonical form (eqns 33–36) with

f1 ¼ 0; f2 ¼ hz1; f3 ¼
z2z3

z1 � 1
; ð39Þ

a ¼ z2
3 þ 2z2z4 � z1ðz1 � 2Þ � 1

2ðz1 � 1Þ ; ð40Þ

and

b ¼ z1 þ z3 � 1: ð41Þ
The functions fi satisfy (eqn 37), and thus the singular arc is

entered and exited via non-singular chattering arcs.

The distance between switches in h (from 0 to hmax or

vice-versa) decays rapidly as one approaches the singular arc,

and the sum of the lengths of both the non-singular arcs,

call it ‘*, is finite. Numerical approximations suggest that

‘* » 7.1. For habitats shorter than ‘* one cannot reach the

singular arc in an optimal fashion.
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